
1

1

1

Taming Dynamically

Adaptive Systems using

Models and Aspects

Brice Morin, Olivier Barais, Grégory Nain

and Jean-Marc Jézéquel

DiVA: European Project on

Dynamic Variability in

Complex Adaptive Systems

http://www.ict-diva.eu/

S-Cube: European Network of

Excellence on Software

Services and Systems

http://www.s-cube-network.eu/

2

2

Outline

•Context, Problems and Related Work

•Solutions to meet the challenges

•Conclusion

•Future works

3

3

•Home-automation to help disabled people

to stay at home

• Aging society

• Hospital have limited resources, rooms, etc

• Very short stays

• Long stays very expensive for people and society

• Houses, flats, etc should be equipped

Context

4

4

EnTiMid in Rennes

4

5

5

Many Different Needs 1/2
P

ic
tu

re
 f

ro
m

 h
tt

p
:/

/w
w

w
.a

p
t.

g
c.

ca

•Living at home
•Motion troubles
•Memory loss
•Speaks French (only)
•Home equiped with :

•LonWorks (lights)
•Velux (shutters)

Mrs. Dupont

6

6

Many Different Needs 2/2

•English student
•Living at home
•He had an accident
•He likes technology
•Wheelchair equipped with
remote access for:

•Lights and shutters (KNX)
•Multimedia (UPnP)P

ic
tu

re
 f

ro
m

 h
tt

p
:/

/d
it

w
w

w
.e

p
fl

.c
h

Mr. John Doe

7

7

Their needs

Medical/technical staff should be able to
•Check their health state
•Check home configuration (shutters, lights, heaters…)

Both

Mrs. Dupont Mr. Doe

Some daily tasks should be
automated (motion
troubles) or reminded
(memory loss).

Would like to control
everything remotely, with
a unified protocol

8

8

Protocols

• Low-level protocols: KNX, X2D, X10, etc

• High-level protocols: UPnP, DPWS, etc

Devices

• Lights, heaters, shutters, etc

Languages

• Mainly French

• But also main European languages

Adaptation to Handicap

• Motion, memory, perception, etc

Different variability dimensions

9

9

Explosion of the number of possible configurations

• 1014 possible configurations! 1028 transitions!

Dynamic Adaptation

• Evolution of the handicap

• Houses should be configured remotely

– No wires to connect/disconnect in the walls

• No service interruption

– Rebooting the system cannot be a solution (lives depend on the system)

Reliability

• Safe migration path

from a valid configuration to another valid configuration

• Performance issue (time) not critical

Challenges

10

10

Related works

B. Cheng et al.

ICSE’06, AOSD’09

Dynamic Adaptation

Reliability, Validation

Variability Management

J. Whittle et al.

MODELS’07

B. Morin et al.

MODELS’08

S. Appel et al.

ICSE’06 M. Mezini et al.

FSE’04

E. Figueiredo et al.

ICSE’08

K. Czarnecki et al.

GPCE’06

P. David et al.

SC’06

F. Fleurey et al.

Models@Run.Time’08

Hallsteinsen et al.

Computer’08

OSGi, Fractal,

OpenCOM, etc

Garlan et al.

Computer’04

U
Oreizy et al.

ICSE’98

11

11

How to validate DAS?

• Specify everything!

– all the configurations: >1014

– all the transitions: ~1028

• Model checking, code generation

Problems

• Explosion: Time consuming, error-prone

• Evolution of the system (not predicted)

– Stop all -> Evolve the specifications -> model check

-> re-generate -> re-deploy

Validation VS Variability management…

12

12

How to manage dynamic variability?

• Do not focus on configurations!

– Write reconfiguration scripts, encapsulating « features »

• Depending on the context and/or user needs

– Choose the most adapted scripts

– Executes all the selected scripts to dynamically adapt the system

Problems

• Scripts written by hand (calls to reconfiguration API)

• Interactions, dependencies between scripts?

• Does the configuration (after executing scripts) make sense?

– Hopefully yes…

Validation VS Variability management…

13

13

Outline

•Context, Problems and Related Work

•Solutions to meet the challenges

•Conclusion

•Future works

14

14

•Focus on variability, not on configurations

•Build (derive) configurations when needed

•Validate configurations before actual adaptation

•Automate the reconfiguration process

Adopting a DSPL approach

15

15

Big picture

Device

controllers

Light Shutter

Target

configuration

Model

@runtime

Running

system

Metamodel

EnTiMid

P
ic

tu
re

 f
ro

m
 h

tt
p

:/
/w

w
w

.a
p

t.
g

c.
ca

Had a flu last week
 stayed in bed

 a nurse every day

Now in a better shape

Derivation

AOM

Design-time

Validation

Runtime

Validation

Script

Generator

16

16

•Still possible to validate everything, for small systems

• Produce all the possible configurations by aspect weaving

• Validate all the configurations

•Discussion

• Time/resource consuming

• The number of configurations explodes

• … but they are automatically generated, by aspect

composition

•Not scalable

Extensive design-time validation

17

17

•Aspect-Oriented Modeling

•Validate the DSPL at design-time

•Strong theoretical background (graph theory)

•Modular reasoning

• interactions and dependencies detection
• Using Critical Pair Analysis

• weaving order

Validation of aspect models

18

18

Two interacting aspects

Device Proxy

Shutter1

Light1

Light

Filter

require I18N

19

19

Two dependent aspects

Device Proxy

Shutter1

Light1

Light

Filter

require I18N

Simplified

I18N

20

20

•Critical Pair Analysis has limitations

• Aspect1, Aspect2 OK

• Aspect1, Aspect3 OK

• Aspect1, (Aspect2, Aspect 3) ?

•Need to validate woven configurations

•At runtime, when they are produced

Limitations of CPA

21

21

•Focus on one configuration

• Not the whole dynamically adaptive system

•Efficient roll-back

• The running system is not yet adapted

• Just discard invalid models

• Report to user

Checking configurations at runtime

22

22

Invariant checking

aspect class Component {

inv mandatoryClientPortBound is

do

self.type.ports.select{p |

not p.isOptional and

p.role == PortRole.CLIENT

}.forAll{p |

self.binding.exists{b |

b.client == p

}

}

end

}

aspect class TransmissionBinding {

inv wellFormedBinding is

do

//link a client port to a server

//port of the same type

end

}

aspect class System {

inv hasEnglishI18N is

do

self.allComponents.contains{c |

c.type.services.contains{s |

s.name == “org.entimid.I18N”

} and c.name == “EN”

}

end

}

General Invariants Specific Invariants

23

23

Defining checking strategies

System

Component

Type

Component

Instance

Port

Binding

types
0..*

instances
0..*

ports
0..*

bindings
0..*

type
1..1

client
1..1

server
1..1

Simplified Metamodel

24

24

Outline

•Context, Problems and Related Work

•Solutions to meet the challenges

•Conclusion

•Future works

25

25

Conclusion

Explosion of the number of possible configurations

• DSPL to manage variability

• AOM to automatically derive configuration

Dynamic Adaptation

• Reflection model causally connected to the running system

• Changes not directly reflected

Reliability

• At design-time

– Still possible to validate all the possible configurations

– AOM provides more scalable mechanisms

• At runtime

– focus on one configuration

– Efficient roll-back

26

26

Perspectives and on-going works

Dual-view AOM

• Structural + behavioral view

• More advanced validation (deadlocks, livelocks, invariants)

• Simulation (performance, impact on QoS)

Towards higher-level adaptations

• We still manipulate components and bindings

• drive the adaptations using domain concepts:

device, scenarios

• Use MDE to map domain concepts to architecture

27

27

Thank you

Questions?

